TEROPAVIMAB AND ZINLIRVIMAB SENSITIVITY IN PEOPLE LIVING WITH MDR HIV-1: PRESTIGIO REGISTRY DATA

1. Infectious Diseases, IRCCS San Raffaele Hospital, Florence, Italy; 2. Gilead Sciences, Inc., Foster City, CA, USA; 3. Infectious and Tropical Diseases "L. Spallanzani" IRCCS, Rome, Italy; 5. Infectious Diseases, University of Rome "Tor Vergata", Rome, Italy; 6. Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy; 8. Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy; 9. Department of Medical Biotechnology, University of Siena, Siena, Italy

BACKGROUND AND AIMS

Teropavimab (TAB) and zinlirvimab (ZAB) are bNAbs that target nonoverlapping HIV-1 envelope spike sites and have been engineered to have long half-lives, potentially allowing for twice-yearly dosing. [1,2]

In a phase 1b proof-of-concept study in PWH with virologic suppression who discontinued oral ART and initiated a regimen of SC lenacapavir + weight-based IV infusions of TAB + ZAB, 18/20 (90%) participants maintained virologic suppression at week 26 [3].

Here, we characterized sensitivity to TAB and ZAB in people living with 4-class drug-resistant HIV (4DR-PWH).

STUDY DESIGN AND METHODS

This was a multicenter, observational study using plasma or PBMCs collected from 50 4DR-PWH (25 with HIV-1 RNA > 1000 copies/mL matched by age, sex, nadir CD4+ and years on ART to 25 virologically suppressed [HIV-1 RNA < 50 copies/mL] PWH) enrolled in the PRESTIGIO Registry (NCT04098315; https://registroprestigio.org) with a documented 4DR (NRTI, NNRTI, PI and INSTI).

Phenotypic sensitivity to bNAbs was determined using the PhenoSense Monoclonal Antibody assay (Monogram), with susceptibility defined as IC90 ≤2 mcg/mL.

HIV-1 env was genotyped from PhenoSense test vectors by next-generation sequencing. Sequences were analyzed for presence of multi-position HIV-1 Env amino acid signatures associated with in-vitro phenotypic susceptibility to teropavimab and zinlirvimab⁴. Briefly, in vitro neutralization data combined with virus sequence information were used to identify HIV Env amino acid positions important for susceptibility (IC50 <1 µg/mL). Only base-pair positions with variability <2% in viral quasi-species were considered part of a signature.

Descriptive statistics are used to present results. Spearman's rank test used for associations between phenotypic susceptibility and clinical variables.

RESULTS

Characteristics of included individuals with analyzed samples (n=46; 4 assay failures) were indicative of extensive treatment history (Table 1).

Of 46/50 (92%) participants with PhenoSense mAb assay results, 35 (76%) were phenotypically sensitive to TAB, 23 (50%) to ZAB, and 19 (41%) to both bNAbs; 7 (15%) had phenotypic resistance to both bNAbs (Table 2). The IC_{qo} values for TAB and ZAB in the PWH included in the study are shown in detail in Figure 1. Of 22 viremic participants, 19 (86%) were phenotypically sensitive to TAB, 10 (45%) to ZAB, 9 (41%) to both bNAbs, and 2 (9%) to neither. Of 24 participants with virologic suppression, 67% were phenotypically sensitive to TAB, 54% to ZAB, 42% to both bNAbs, and 5 (21%) to neither. The proportion of participants with sensitivity to both bNAbs was similar (p=0.99) in viremic participants (9/22 [41%]) compared to those with virologic suppression (10/24 [42%]).

More complex signatures predicted phenotypic susceptibility to teropavimab (Figure 2; Panel A) and zinlirvimab (Figure 2; Panel B) with greater specificity.

Nonsignificant correlations between phenotypic sensitivity to bNAbs and age, years of ART, CD4+ cell count, HIV-RNA, type of ART regimen at the sample collection, viral tropism and HIV subtype. There were marginal correlations between phenotypic sensitivity to TAB and years since HIV diagnosis (Spearman r= 0.287, p=0.053) and phenotypic sensitivity to ZAB and CD8+cell count (Spearman r= -0.317, p=0.049).

Exerced a conter a conte ERGAMO: Francesco Saladini, Daniele Armenia; STUDY COORDINATORS: Elisabetta Carini, Sabrina Bagaglio; STATISTICAL AND MONITORING TEAM: Laura Galli, Riccardo Lolatto, Sara Diotallevi; ENROLLING CENTERS: ANCONA: Marcello Tavio, Alessandra Mataloni Paggi; BARI: Annalisa Saracino, Flavia Balena; BERGAMO: Francesco Castelli, Emanuele Focà, Davide Suardi; BOLOGNA: Leonardo Calza, Malerba Federica; BRESCIA: Francesco Castelli, Emanuele Focà, Davide Suardi; BOLOGNA: Leonardo Calza, Malerba Federica; BRESCIA: Francesco Castelli, Emanuele Focà, Davide Suardi; BOLOGNA: Leonardo Calza, Malerba Federica; BRESCIA: Francesco Castelli, Emanuele Focà, Davide Suardi; BOLOGNA: Leonardo Exercia Exerci Exercia Exerc Sele Tekle Kiros, Filippo Ducci; FOGGIA: Teresa Santantonio, Sergio Ferrara, Marianna Narducci; GENOVA: Emanuele Pontali, Rebecka Papaioannu, Tommaso Clemente, Sara Diotallevi, Spinello Antinori, Tiziana Formenti, Antonio Di Biagio, Sabrina Bagaglio, Laura Galli, Rebecka Papaioannu, Tommaso Clemente, Sara Diotallevi, Spinello Antinori, Tiziana Formenti, Andrea Eisa Berica De Flaviis, Maria Maria Cattelan, Maria Mazitelli; PALERMO: Antonio Cascio, Marcello Trizzino; PARA: Elisa Fronti, Diletta Laccabue; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PARMA: Elisa Fronti, Diletta Laccabue; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PARMA: Elisa Fronti, Diletta Laccabue; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PARMA: Elisa Fronti, Diletta Laccabue; PAVIA: Roberto Gulminetti, Andrea Zuccarini; PERUGIA: Daniela Francisci, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PARMA: Elisa Fronti, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PARMA: Elisa Fronti, Elisabetta; NAPOLI: Elio Manzillo, Amedeo Lanzardo; PARMA: Elisa Fronti, Elisa > BY: ViiV Healthcare, Gilead Sciences, Theratechnologies, MSD. This study was supported by a grant (CO-IT-672-6742_PRESTIGIO) from GILEAD Sciences.

Waters L, de Miguel-Buckley R, Poulin S, Arribas JR. Broadly Neutralizing Antibodies for Human Immunodeficiency Virus Treatment: Broad in Theory, Narrow in Reality. Clin Infect Dis. 2023 Mar 21;76(6):1136-1141. doi: 10.1093/cid/ciac835. 2. Gautam R, Nishimura Y, Gaughan N, Gazumyan A, Schoofs T, Buckler-White A, Seaman MS, Swihart BJ, Follmann DA, Nussenzweig MC, Martin MA. A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection. Nat Med. 2018 May;24(5):610-616. doi: 10.1038/s41591-018-0001-2. 3. Eron JJ, Little SJ, Crofoot G, Cook P, Ruane PJ, Jayaweera D, VanderVeen LA, DeJesus E, Zheng Y, Mills A, Huang H, Waldman SE, Ramgopal M, Gorgos L, Collins SE, Baeten JM, Caskey M. Safety of teropavimab and zinlirvimab with lenacapavir once every 6 months for HIV treatment: a phase 1b, randomised, proof-of-concept study. Lancet HIV. 2024 Jan 30:S2352-3018(23)00293-X. 4. Moldt B, Parvangada A, Martin R, Pace C, Balakrishnan M, Thomsen ND, E Collins S, Kuster H, Braun DL, Günthard HF, Geleziunas R, Callebaut C. Evaluation of Broadly Neutralizing Antibody Sensitivity by Genotyping and Phenotyping for Qualifying Participants to HIV Clinical Trials. J Acquir Immune Defic Syndr. 2021 Sep 1;88(1):61-69

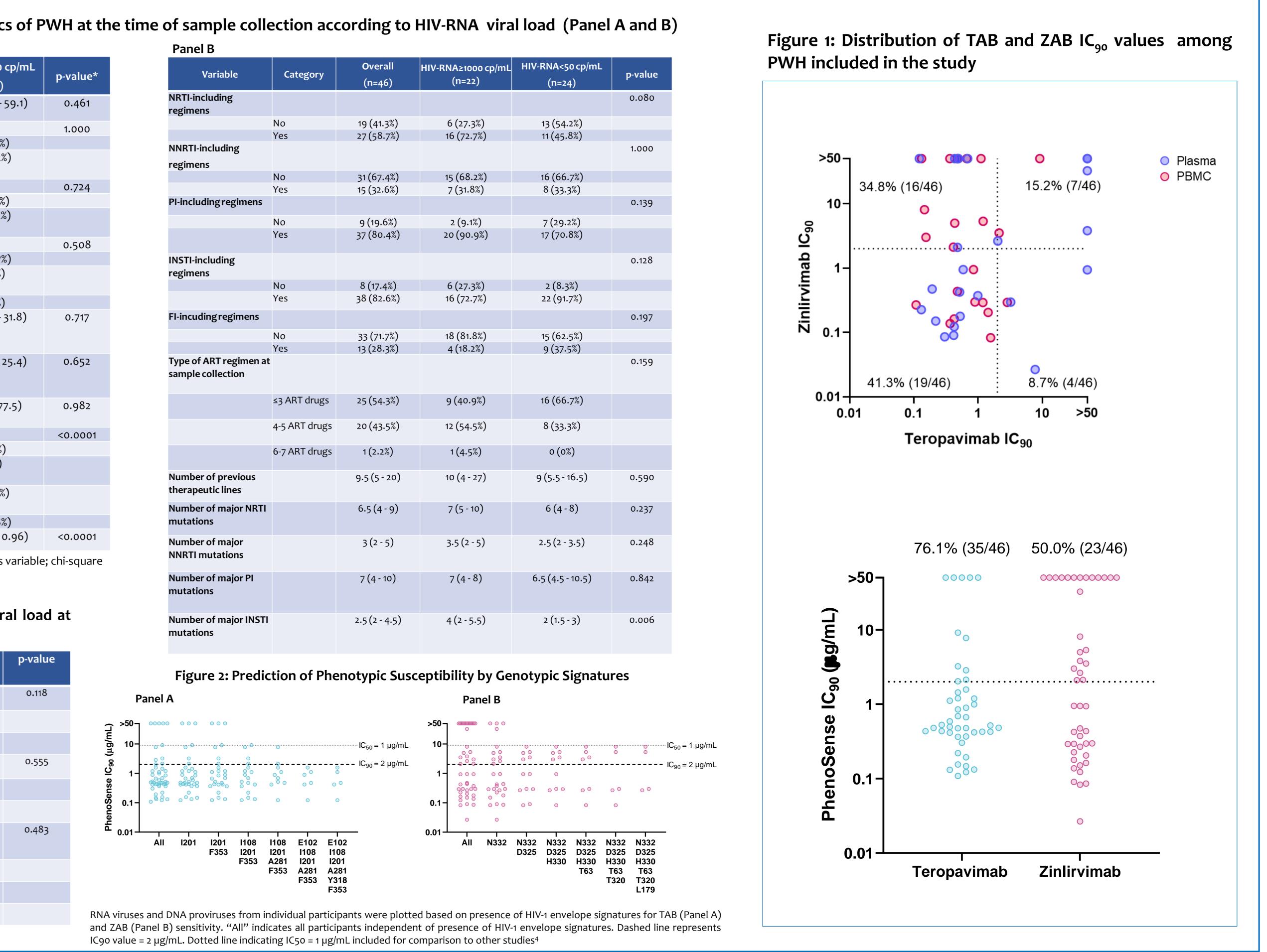
Vincenzo Spagnuolo¹, Laura Galli¹, Aiyappa Parvangada², Keith Dunn², Filippo Lagi³, Roberta Gagliardini⁴, Loredana Sarmati⁵, Anna Maria Cattelan⁶, Andrea Giacomelli⁷, Maria Mercedes Santoro⁸, Maurizio Zazzi⁹, Christian Callebaut², Antonella Castagna¹, Laurie A. VanderVeen²

Table 1: Demograpic, virological and therapeutic characteristics of PWH at the time of sample collection according to HIV-RNA viral load (Panel A and B) Panel A

Variable	Category	Overall	HIV-RNA ≥1000 cp/mL (n=22)	HIV-RNA <50 cp/mL (n=24)	p-value*
		(n=46)			
Age (years)		54.5 (48.1 - 58.1)	53.7 (32.0 - 58.1)	54.9 (49.4 - 59.1)	0.461
Sex at birth					1.000
	Female	9 (19.6%)	4 (18.2%)	5 (20.8%)	
	Male	37 (80.4%)	18 (81.8%)	19 (79.2%)	
HIV-1 tropism					0.724
	CCR5	16 (37.2%)	8 (40%)	8 (34.8%)	
	CXCR4	27 (62.8%)	12 (60%)	15 (65.2%)	
HIV-1 subtype					0.508
	В	31 (91.2%)	18 (94.7%)	13 (86.7%)	
	CRF02_AG	1 (2.9%)	0 (0%)	1 (6.7%)	
	F	2 (5.9%)	1 (5.3%)	1 (6.7%)	
Years since HIV infection		25.8 (22.9 - 31.7)	25.5 (22.3 - 31.4)	26.6 (23.0 - 31.8)	0.717
Years of ART		23.2 (20.8 - 26.77)	23.3 (20.8 - 26.9)	23.2 (20.7 - 25.4)	0.652
Nadir CD4+ (cells/mcL)		36 (8 - 83)	43 (5 - 91)	33 (14.5 - 77.5)	0.982
CD4(cells/mcL)					<0.0001
	<200	13 (28.3%)	11 (50%)	2 (8.3%)	
	≥200 – <350	9 (19.6%)	9 (40.9%)	0 (0%)	
	≥350 - <500	7 (15.2%)	2 (9.1%)	5 (20.8%)	
	≥500	17 (37%)	0 (0%)	17 (70.8%)	
CD4/CD8 ratio		0.45 (0.22 - 0.81)	0.25 (0.13 - 0.36)	0.81 (0.47 - 0.96)	<0.0001

or Fisher exact test for categorical variables, as appropriate

Table 2: Phenotypic susceptibility to TAB and ZAB according to viral load at the time of sample collection


Phenotypic sensitivity	Category	Overall (n=46)	HIV-RNA≥1000 (n=22)	HIV-RNA<50 (n=24)
Phenotypic sensitivity to TAB				
	No	11 (23.9%)	3 (13.6%)	8 (33.3%)
	Yes	35 (76.1%)	19 (86.4%)	16 (66.7%)
Phenotypic sensitivity to ZAB				
	No	23 (50%)	12 (54.5%)	11 (45.8%)
	Yes	23 (50%)	10 (45.5%)	13 (54.2%)
Overall Phenotypic sensitivity to BnAbs				
	None	7 (15.2%)	2 (9.1%)	5 (20.8%)
	TAB or ZAB	20 (43.5%)	11 (50%)	9 (37.5%)
	TAB and ZAB	19 (41.3%)	9 (40.9%)	10 (41.7%)

• A significant number of the analyzed 4DR-PWH were found to have virus susceptible to TAB and ZAB. • Demographics and clinical characteristics of analyzed population did not appear to be correlated with susceptibility to TAB and ZAB. • Confirmation of these findings in a larger sample may elucidate if heavily treatment experienced PWH with multidrug-resistant HIV could be considered candidate for future trials investigating bNAbs-containing regimens to achieve or maintain virologic suppression

Acknowledgments

References

Variable	Category	Overall	HIV-RNA≥1000 cp/mL	HIV-RNA<50 cp/mL	p-value
Variable	Category	(n=46)	(n=22)	(n=24)	p-value
NRTI-including regimens					0.080
	No	19 (41.3%)	6 (27.3%)	13 (54.2%)	
NNDTI including	Yes	27 (58.7%)	16 (72.7%)	11 (45.8%)	1 0 0 0
NNRTI-including					1.000
regimens	No	31 (67.4%)	15 (68 2%)	16 (66 7%)	
	Yes	15 (32.6%)	15 (68.2%) 7 (31.8%)	16 (66.7%) 8 (33.3%)	
PI-including regimens	103	15 (52.0%)	/ (51.0%)	0 (55:5%)	0.139
0 0	Nie			- (%)	
	No Yes	9 (19.6%) 37 (80.4%)	2 (9.1%) 20 (90.9%)	7 (29.2%) 17 (70.8%)	
	165	37 (80.4%)	20 (90.9%)	1/ (/0.0%)	
INSTI-including regimens					0.128
	No	8 (17.4%)	6 (27.3%)	2 (8.3%)	
	Yes	38 (82.6%)	16 (72.7%)	22 (91.7%)	
FI-incuding regimens					0.197
	No	33 (71.7%)	18 (81.8%)	15 (62.5%)	
	Yes	13 (28.3%)	4 (18.2%)	9 (37.5%)	
Type of ART regimen at sample collection					0.159
	≤3 ART drugs	25 (54.3%)	9 (40.9%)	16 (66.7%)	
	4-5 ART drugs	20 (43.5%)	12 (54.5%)	8 (33.3%)	
	6-7 ART drugs	1 (2.2%)	1 (4.5%)	0 (0%)	
Number of previous therapeutic lines		9.5 (5 - 20)	10 (4 - 27)	9 (5.5 - 16.5)	0.590
Number of major NRTI mutations		6.5 (4 - 9)	7 (5 - 10)	6 (4 - 8)	0.237
Number of major NNRTI mutations		3 (2 - 5)	3.5 (2 - 5)	2.5 (2 - 3.5)	0.248
Number of major PI mutations		7 (4 - 10)	7 (4 - 8)	6.5 (4.5 - 10.5)	0.842
Number of major INSTI mutations		2.5 (2 - 4.5)	4 (2 - 5.5)	2 (1.5 - 3)	0.006

CONCLUSIONS

Vincenzo Spagnuolo, MD. Infectious Diseases Unit San Raffaele Scientific Institute, Milan, Italy, telephone: +390226437907, e-mail: spagnuolo.vincenzo@hsr.it; registroprestigio@hsr.it

691

Contact Information